Type C Niemann-Pick disease: cellular uncoupling of cholesterol homeostasis is linked to the severity of disruption in the intracellular transport of exogenously derived cholesterol

1991 
Abstract A uniquely attenuated disruption of cholesterol homeostasis has been characterized in certain Niemann-Pick, type C (NP-C) fibroblasts. Uptake of LDL-cholesterol by cultured fibroblasts derived from two clinically affected brothers with this variant biochemical phenotype led to less intracellular accumulation of unesterified cholesterol than found in other typical cell lines. This limited cholesterol lipodosis in the variant NP-C cells reflected cholesterol processing errors that differed from the cellular lesions in classical NP-C cells in the following ways: (1) a more limited intracellular distribution of the excessive unesterified cholsterol; (2) shorter and more transient deleys in the induction of cholesterol-mediated homeostatic responses; and (3) more efficient intracellular transport of exogenously derived cholesterol to the plasma membrane and the endoplasmic reticulum. Activation of acyl-CoA cholesterol acyltransferase (ACAT) was greater than 100-fold in both control and NP-C fibroblasts when cell cultures were preconditioned with 25-hydroxycholesterol, but the subsequent esterification of oxogenous non-lipoprotein [ 3 H]cholesterol remained deficient in all NP-C cells. In the variant NP-C cells conditioned with the exysterol, this esterification of exogenous [ 3 H]cholesterol was less affected than in classical NP-C cultures. The NP-C mutation affects a broad spectrum of metabolic responses related to the processing of exogenously derived cholesterol. Among this pleiotropic array of deficient responses, retarded intracellular cholesterol transport appears most closely linkd to the primary mutation. This conclusion is supported by two observations: (1) the degree to which sterol transport is affected in mutant cells in turn reflects the extent to which cholesterol-homeostatic responses are compromised; and (2) sterol transport remains deficient despite concurrent normal activation of other cellular responses, such as cholesterol esterification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    35
    Citations
    NaN
    KQI
    []