On-cell nuclear magnetic resonance spectroscopy to probe cell surface interactions.

2021 
Nuclear magnetic resonance (NMR) spectroscopy allows determination of atomic-level information about intermolecular interactions, molecular structure, and molecular dynamics in the cellular environment. This may be broadly divided into studies focused on obtaining detailed molecular information in the intracellular context ("in-cell") or those focused on characterizing molecules or events at the cell surface ("on-cell"). In this review, we outline some key NMR techniques applied for on-cell NMR studies through both solution-state and solid-state NMR and survey studies that have used these techniques to uncover key information. We particularly focus on application of on-cell NMR spectroscopy to characterize ligand interactions with cell surface membrane proteins such as G-protein coupled receptors (GPCRs), receptor tyrosine kinases, etc. These techniques allow for quantification of binding affinities, competitive binding assays, delineation of portions of ligands involved in binding, ligand bound-state conformational determination, evaluation of receptor structuring and dynamics, and inference of distance constraints characteristic of the ligand-receptor bound state. Excitingly, it is possible to avoid the barriers of production and purification of membrane proteins while obtaining directly physiologically-relevant information through on-cell NMR. We also provide a briefer survey of the applicability of on-cell NMR approaches to other classes of cell surface molecule.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    118
    References
    0
    Citations
    NaN
    KQI
    []