Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel

2015 
To study the thermal deformation behavior and microstructural evolution of the type 347H austenitic steel, compression experiments were conducted at the temperatures of 800–1100 °C with strain rates of 0.01–10 s−1. The activation energy and constitutive equation of the type 347H steel during thermal deformation process were determined according to the flow stress curves. Both the hot processing maps and microstructure characteristics under different deformation conditions were investigated. Based on the thermal processing maps, two unstable regions under 800 °C/0.01–10 s−1 and 1100 °C/0.01 s−1 were identified. The processing maps were in favor of optimizing thermal processing parameters and improving thermal processing properties of the type 347H austenitic steel. After thermal deformation, the dislocation in the austenite matrix increases significantly. Besides, in the stable regions, the precipitation of carbides is facilitated by thermal deformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    16
    Citations
    NaN
    KQI
    []