Active modulation of intracavity laser intensity with PDH locking for photoacoustic spectroscopy

2020 
Here we report a novel, to the best of our knowledge, method of active intracavity intensity modulation for cavity-enhanced photoacoustic spectroscopy (PAS) without the need for any external optical modulators. Based on the Pound–Drever–Hall (PDH) locking technique, a dither is added to the PDH error signal to periodically vary the locking point between the laser frequency and optical cavity within a sub-MHz frequency range. While significantly enhancing the intracavity laser intensity, the optical cavity also acts as an intensity modulator. As a proof-of-principle, we demonstrated the PAS of ${{\rm C}_2}{{\rm H}_2}$C2H2 by placing a photoacoustic cell ($Q$Q-factor $\sim{10}$∼10) inside a Fabry–Perot cavity (finesse $\sim{628}$∼628) and adopting the proposed intracavity intensity modulation scheme. By detecting the weak ${{\rm C}_2}{{\rm H}_2}$C2H2 line at ${6412.73}\;{{\rm cm}^{ - 1}}$6412.73cm−1, the sensor achieves a normalized noise equivalent absorption (NNEA) coefficient of ${1.5} \times {{10}^{ - 11}}\;{{\rm cm}^{ - 1}}{{\rm WHz}^{ - 1/2}}$1.5×10−11cm−1WHz−1/2. This method enables the continuous locking of laser frequency and optical cavity, and it achieves the intracavity intensity modulation with an adjustable modulation depth as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []