3D-printed smartphone-based device for label-free cell separation

2017 
Aim: To assess several fabrication metrics of a 3D-printed smartphone-attachable continuous-flow magnetic focusing device for real-time separation and detection of different cell types based on their volumetric mass density in high-volume samples. Method: The smartphone apparatus has been designed and fabricated using three different 3D printing method. Several 3D printing metrics including cost, printing time, and resolution have been evaluated to propose a cost-efficient and high-performance platform for low-resource settings. Results: To apply the magnetic focusing technique on large sample volumes, a heterogeneous mixture of sample (e.g., containing blood cells and cancer cells) suspended in paramagnetic medium is pumped through a magnetic field at an optimum flow rate. The performance of the 3D-printed device has been investigated by demonstrating separation of microspheres, breast, lung, ovarian and prostate cancer cells mixed with blood cells. The separation distance of cancer and blood cells is ar...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    14
    Citations
    NaN
    KQI
    []