Magnetic Particles in Biotechnology: From Drug Targeting to Tissue Engineering

2012 
In most applications reported in the literature, magnetic systems are typically composed of an inorganic core and an organic coating. Although cores have been made from different materials, iron oxide nanoparticles constituted of magnetite (Fe3O4) and maghemite (γFe2O3) are used at a great extent. While the core provide nanocontainers with magnetic properties, the shell functions to (i) protect against core agglomeration, (ii) provide chemical handles for the conjugation of drug molecules, and (iii) limit opsonization. Additionally, shell coatings have been engineered to enhance pharmacokinetics and tailor in vivo fate. Organic shells main comprise phospholipid bilayered membranes or polymeric coating of dextran, for instance. Magnetic system design with such different materials can be achieved via a number of approaches, including in situ coating, post-synthesis adsorption and endgrafting. In fact, several methods have been proposed for their synthesis, coating, and stabilization, mainly comprising the precipitation route together with a surface functionalization step by means of polymers or surfactants. This point will be the focus of the next chapter section – “Producing magnetic particles.”
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    8
    Citations
    NaN
    KQI
    []