Meiotic Pairing and Disjunction of Mini-X Chromosomes in Drosophila Is Mediated by 240-bp rDNA Repeats and the Homolog Conjunction Proteins SNM and MNM

2007 
In most eukaryotes, segregation of homologous chromosomes during meiosis is dependent on crossovers that occur while the homologs are intimately paired during early prophase. Crossovers generate homolog connectors known as chiasmata that are stabilized by cohesion between sister-chromatid arms. In Drosophila males, homologs pair and segregate without recombining or forming chiasmata. Stable pairing of homologs is dependent on two proteins, SNM and MNM, that associate with chromosomes throughout meiosis I until their removal at anaphase I. SNM and MNM localize to the rDNA region of the X–Y pair, which contains 240-bp repeats that have previously been shown to function as cis-acting chromosome pairing/segregation sites. Here we show that heterochromatic mini-X chromosomes lacking native rDNA but carrying transgenic 240-bp repeat arrays segregate preferentially from full-length sex chromosomes and from each other. Mini-X pairs do not form autonomous bivalents but do associate at high frequency with the X–Y bivalent to form trivalents and quadrivalents. Both disjunction of mini-X pairs and multivalent formation are dependent on the presence of SNM and MNM. These results imply that 240-bp repeats function to mediate association of sex chromosomes with SNM and MNM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    15
    Citations
    NaN
    KQI
    []