Effects of Process Parameters on Hole Circularity and Taper in Pulsed Nd:YAG Laser Microdrilling of Tin-Al2O3 Composites

2010 
This study investigates the effect of five parameters on circularity and taper of drilled holes in pulsed Nd:YAG laser microdrilling process. The effect of various process parameters like lamp current, pulse frequency, pulse width, air pressure, and focal length of Nd:YAG laser microdrilling on hole circularity at entry, exit, and taper has been investigated through response surface methodology (RSM)–based experimental study. The significant parameters have been selected based on the analysis of variance (ANOVA). The parametric combination for optimal hole circularity and hole taper has also been evaluated. In micromanufacturing, circularity of a drilled hole at entry, exit, and taper are important attributes which greatly influence the quality of a drilled hole. The drilling operation has been carried out on titanium nitride-alumina (TiN-Al2O3) composite, an important electroconductive ceramic suitable for wear and heating applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    23
    Citations
    NaN
    KQI
    []