Three dimensional dynamic simulation for bubbling pressurized fluidized bed combustion furnace.

1995 
A mathematical model for the simulation of the pressurized fluidized bed combustion (PFBC) furnaces has been developed to predict three-dimensional distribution of fuel, oxygen and bed temperatures. In this model fuel particles in the bed have been considered as moving diffusively. Three different values of dispersion coefficients of fuel particles, two lateral and one axial coefficients, have been measured using the temperature profile obtained in the scale-down cold model. The model was designed according to the similarity rule, and features a tube-bundle arrangement in the bed. Some of the fuel particles on the bed surface are assumed in the model to be blown out from the bed, and are regarded as unburnt fuel. The ratio of such unburnt fuel particles to the fuel particles concentrated on the bed surface has been estimated using combustion efficiency data obtained in the pilot plant. These dispersion coefficients and the ratio of the unburnt fuel have been used in the proposed simulation model. For the design of the large scale PFBC plants, the present simulation model has been utilized. The number and the location of the fuel feed points have been optimized by taking uniformity of combustion as the design criteria. The criterion formore » estimating favorable features of combustion has been chosen as minimizing the quantity of unburnt fuel that would move in the freeboard and the high temperature gas line. This paper presents the description and the verification of the proposed model and its application to the furnace design of the large scale PFBC plant.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []