Phase equilibrium experiments on the simulated high-level waste glass containing platinum group elements
2016
Phase equilibrium experiments for the simulated high-level waste (HLW) glass containing palladium, rhodium and ruthenium discharged from a full scale mock up melter have been carried out between 1073 and 1473 K under air and CO2 atmosphere. The chemical compositions of Pd–Rh–Ru–Te (Pd metal phase) and (Ru, Rh)O2 (Ru oxide phase) solid solutions and glass matrix were measured by electron probe micro analysis. Palladium content in the Pd metal phase decreased and ruthenium content in the Ru oxide phase increased with increasing temperature and decreasing oxygen fugacity due to progressive reduction of rhodium. The chemical compositions of these crystalline phases are independent of that of borosilicate glass matrix. Partition coefficient of rhodium between Pd metal phase and Ru oxide phase (KRh) can be expressed by ln K Rh =27264/T-18.372+ ln fO2where T and fO2 represent absolute temperature and oxygen fugacity. Based on the comparison of crystal compositions in the HLW glass with experimental results, it c...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
6
Citations
NaN
KQI