Using Pre-Training Can Improve Model Robustness and Uncertainty

2019 
Tuning a pre-trained network is commonly thought to improve data efficiency. However, Kaiming He et al. have called into question the utility of pre-training by showing that training from scratch can often yield similar performance, should the model train long enough. We show that although pre-training may not improve performance on traditional classification metrics, it does provide large benefits to model robustness and uncertainty. Through extensive experiments on label corruption, class imbalance, adversarial examples, out-of-distribution detection, and confidence calibration, we demonstrate large gains from pre-training and complementary effects with task-specific methods. We show approximately a 30% relative improvement in label noise robustness and a 10% absolute improvement in adversarial robustness on CIFAR-10 and CIFAR-100. In some cases, using pre-training without task-specific methods surpasses the state-of-the-art, highlighting the importance of using pre-training when evaluating future methods on robustness and uncertainty tasks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    64
    Citations
    NaN
    KQI
    []