Superior Energy Storage Density and Giant Negative Electrocaloric Effects in (Pb 0.98 La 0.02 )(Zr, Sn)O 3 Antiferroelectric Ceramics

2021 
Antiferroelectric materials are demanded in energy storage and solid-state cooling devices due to their distinct hysteresis loops and phase transition behaviors. In this work, (Pb0.98La0.02)(ZrxSn1-x)0.995O3 (PLZSx) antiferroelectric bulk ceramics with x=0.45-0.60 were prepared via the conventional solid-state reaction approach. The recoverable energy storage density of 4.8 J cm-3 and energy storage efficiency of 82.5% were procured in PLZS0.6 ceramics. In addition, the hysteresis loops were measured over a broad range of temperature/electric field and the electrocaloric effects were calculated using the Maxwell relation. The linear parts occurred in the polarization – electric field (P-E) hysteresis loop were fitted, and a power function of Em with m>2 for antiferroelectrics, while m<2 for normal ferroelectrics and relaxor ferroelectrics were procured. A giant negative electrocaloric effect (ΔT=-10.2 K) was also obtained at an operating temperature of 383 K and 20 MV m-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []