M5-brane Sources, Holography, and Argyres-Douglas Theories

2021 
We initiate a study of the holographic duals of a class of four-dimensional $\mathcal{N}=2$ superconformal field theories that are engineered by wrapping M5-branes on a sphere with an irregular puncture. These notably include the strongly-coupled field theories of Argyres-Douglas type. Our solutions are obtained in 7d gauged supergravity, where they take the form of a warped product of $AdS_5$ and a "half-spindle." The irregular puncture is modeled by a localized M5-brane source in the internal space of the gravity duals. Our solutions feature a realization of supersymmetry that is distinct from the usual topological twist, as well as an interesting Stuckelberg mechanism involving the gauge field associated to a generator of the isometry algebra of the internal space. We check the proposed duality by computing the holographic central charge, the flavor symmetry central charge, and the dimensions of various supersymmetric probe M2-branes, and matching these with the dual Argyres-Douglas field theories. Furthermore, we compute the large-$N$ 't Hooft anomalies of the field theories using anomaly inflow methods in M-theory, and find perfect agreement with the proposed duality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    5
    Citations
    NaN
    KQI
    []