Anisotropic c - f hybridization in the ferromagnetic quantum critical metal CeRh6Ge4.

2021 
Heavy fermion compounds exhibiting a ferromagnetic quantum critical point have attracted considerable interest. Common to two known cases, i.e., CeRh6Ge4 and YbNi4P2, is that the 4f moments reside along chains with a large inter-chain distance, exhibiting strong magnetic anisotropy that was proposed to be vital for the ferromagnetic quantum criticality. Here we report an angle-resolved photoemission study on CeRh6Ge4, where we observe sharp momentum-dependent 4f bands and clear bending of the conduction bands near the Fermi level, indicating considerable hybridization between conduction and 4f electrons. The extracted hybridization strength is anisotropic in momentum space and is obviously stronger along the Ce chain direction. The hybridized 4f bands persist up to high temperatures, and the evolution of their intensity shows clear band dependence. Our results provide spectroscopic evidence for anisotropic hybridization between conduction and 4f electrons in CeRh6Ge4, which could be important for understanding the electronic origin of the ferromagnetic quantum criticality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []