On the Effect of Pressure Oscillations on Droplet Autoignition

2011 
The paper discusses the possible interaction between combustion instabilities and induction times of droplets (and sprays) to autoignition. It is shown that acoustic pressure/temperature oscillations significantly affect the induction times of n-heptane droplets. This may play an additional role in low frequency dynamics and might be the main driver of high frequency dynamics. Experiments on single droplets in an acoustic field were used to validate numerical simulations on the autoignition of large n-heptane droplets. The simulations were then extended towards technical droplet sizes and a gas turbine typical pressure range of 17 bar. It was found that the acoustic-scale changes of the pressure and temperature result in significant changes of the ignition delay. Applying numerical calculations to micro-sized droplets enabled to study the thermo-acoustic effects under conditions approximating real gas-turbines. The findings reveal the importance of thermo-acoustic effects on ignition processes in the instability-driving mechanisms of combustion and indicate that “acoustics-ignition”-interactions must be taken into account for low-frequency as well as for high-frequency dynamics; this in addition to the flow and mixture perturbations which are well known to drive combustion instabilities in gas-turbines.Copyright © 2011 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    2
    Citations
    NaN
    KQI
    []