QSAR study on estrogenic activity of structurally diverse compounds using generalized regression neural network

2008 
Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a powerful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing drugs for human estrogen replacement therapy, and identifying potential estrogenic endocrine disruptors. In this study, a simple yet powerful neural network technique, generalized regression neural network (GRNN) was used to develop a QSAR model based on 131 structurally diverse estrogens (training set). Only nine descriptors calculated solely from the molecular structures of compounds selected by objective and subjective feature selections were used as inputs of the GRNN model. The predictive power of the built model was found to be comparable to that of the more traditional techniques but requiring significantly easy implementation and a shorter computation-time. The obtained result indicates that the proposed GRNN model is robust and satisfactory, and can provide a feasible and practical tool for the rapid screening of the estrogenic activity of organic compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []