High Accumulation of Platinum-DNA Adducts in Strial Marginal Cells of the Cochlea Is an Early Event in Cisplatin but Not Carboplatin Ototoxicity

2006 
Ototoxicity is a typical dose-limiting side effect of cancer chemotherapy with cisplatin but much less so with carboplatin. To elucidate the underlying molecular pathological mechanisms, we have measured the formation and persistence of drug-induced DNA adducts in the nuclei of inner ear cells of guinea pigs after short-term exposure to either cisplatin or carboplatin using immunofluorescence staining and quantitative image analysis. After application of carboplatin, all cells of the cochlea exhibited a similar burden of guanine-guanine intrastrand cross-links in DNA. In contrast, we observed a pronounced 3- to 5-fold accumulation of this cytotoxic adduct exclusively in the marginal cells of the stria vascularis between 8 and 48 h after treatment with cisplatin. In the kidney, the other critical target tissue of cisplatin toxicity, a similar high preferential formation of cytotoxic DNA adducts was measured in the tubular epithelial cells but not in other renal cell types. As for the ear, this excessive formation of DNA damage in a particular cell type was seen in animals treated with cisplatin but not those treated with carboplatin. Because cisplatin ototoxicity is often attributed to oxidative stress mediated by the generation of radical oxygen species (ROS), we have measured in parallel the levels of the lead DNA oxidation product 8-oxoguanine (8-oxoG) in cochlear cryosections. Compared with basal levels in untreated control cochleas, no additional formation of 8-oxoG was detectable up to 48 h after cisplatin treatment in the DNA of either inner-ear cell type. This suggests that the generation of ROS may be a secondary event in cisplatin ototoxicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    64
    Citations
    NaN
    KQI
    []