Accompaniment of Time-Lapse Parameters and Cumulus Cell RNA-Sequencing in Embryo Evaluation

2021 
The aim of this study was to investigate the use of time-lapse morphokinetic parameters and cumulus cells transcriptomic profile to achieve a more accurate and non-invasive method in embryo evaluation. Two hundred embryos from 20 couples were evaluated based on morphokinetic characteristics using time-lapse. Embryos were divided into the high-quality, moderate-quality, and bad-quality groups. Non-fertilized oocytes were considered as the fourth group. T5 (time to five cells), S2 (time from three to four cells), and CC2 (time from two to three cells) were recorded. Also, the cumulus cells of the respective oocytes were divided into high-quality, moderate-quality, bad-quality, and non-fertilized groups based on the grading of the embryos. Then their transcriptomic profiles were analyzed by RNA-sequencing. Finally, the correlation between differentially expressed genes and embryo time-lapse parameters was investigated. T5 was the only timing that showed a statistically significant difference between high-quality group and other groups. RNA-sequencing results showed that 37 genes were downregulated and 106 genes were upregulated in moderate, bad-quality, and non-fertilized groups compared to high-quality group (q value < 0.05). These genes were involved in the main biological processes such as cell cycle, DNA repair, cell signaling and communication, transcription, and cell metabolism. Embryos graded in different groups showed different transcriptomic profiles in the related cumulus cells. Therefore, it seems that embryo selection using the combination of cytokinetics and cumulus cells gene expression can improve the accuracy of the embryo selection and pregnancy rate in ART clinics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []