Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum

2008 
Recent studies indicate that low concentrations of acetaldehyde may function as the primary factor in alcoholic cardiomyopathy by disrupting Ca2+ handling or disturbing cardiac excitation-contraction coupling. By producing reactive oxygen species, acetaldehyde shifts the intracellular redox potential from a reduced state to an oxidized state. We examined whether the redox state modulates acetaldehyde-induced Ca2+ handling by measuring Ca2+ transient using a confocal imaging system and single ryanodine receptor type 2 (RyR2) channel activity using the planar lipid bilayer method. Ca2+ transient was recorded in isolated rat ventricular myocytes with incorporated fluo 3. Intracellular reduced glutathione level was estimated using the monochlorobimane fluorometric method. Acetaldehyde at 1 and 10 μM increased Ca2+ transient amplitude and its relative area in intact myocytes, but acetaldehyde at 100 μM decreased Ca2+ transient area significantly. Acetaldehyde showed a minor effect on Ca2+ transient in myocytes...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    20
    Citations
    NaN
    KQI
    []