Ethanol perfusion increases the yield of oxidative phosphorylation in isolated liver of fed rats.

2002 
Abstract The question arises as to the effect of ethanol on the actual yield of oxidative phosphorylation in the whole liver because of contradictory results reported in isolated hepatic mitochondria. The adenosine triphosphate (ATP) content of liver isolated from fed rats and perfused in the presence (10 mM) and absence of ethanol was continuously evaluated using 31 P Nuclear Magnetic Resonance (NMR). An accurate estimation of mitochondrial ATP synthesis in the whole organ was obtained by subtracting the glycolytic ATP supply from the total ATP production. Simultaneously, the respiratory activity was assessed using O 2 Clark electrodes. The data indicate that ethanol enhanced the net consumption of ATP, leading to a new steady state of the ATP content. ATP synthesis was also found higher under ethanol [1.86±0.02 μmol/min g wet weight (min g ww)] than in control [1.44±0.18 μmol/min g ww]. However, mitochondrial respiration remained unchanged [2.20±0.13 μmol/min g ww] and, consequently, the in situ mitochondrial ATP/O ratio increased from 0.33±0.035 (control) to 0.42±0.015 (ethanol). The increase of the oxidative phosphorylation yield in the whole liver may be linked to the decrease in cytochrome oxidase activity induced by ethanol [FEBS Lett. 468 (2000) 239]. The significant raise (27%) of the ATP/O ratio was not sufficient to maintain the ATP level following ethanol-increased ATP consumption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    15
    Citations
    NaN
    KQI
    []