Dynamic modeling of constant curvature continuum robots using the Euler-Lagrange formalism

2014 
Dynamic models of continuum manipulators tend to become very complex, especially for spatial manipulators with multiple sections. Therefore a practicable model is needed that can be used for simulations and model-based control design. Neglecting rotational energies and assuming a continuum manipulator that consists of a single concentrated mass per section, dynamic equations for each actuator state are derived using the Euler-Lagrange formalism. Forces, positions and velocities are transformed to a global reference system using the homogeneous transformation based on constant curvature robot kinematics and its derivatives. Measurements of an example manipulator verify the resulting dynamic model that can be used to both simulate the dynamics and calculate the inverted robot dynamics needed for model-based controller design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    34
    Citations
    NaN
    KQI
    []