Study of Li Adsorption on Graphdiyne Using Hybrid DFT Calculations

2019 
Promising applications of graphdiyne have often been initiated by theoretical predictions especially using DFT known as the most powerful first-principles electronic structure calculation method. However, there is no systematic study on the reliability of DFT for the prediction of the electronic properties of the graphdiyne. Here, we performed a study of Li adsorption on the graphdiyne using hybrid DFT with LC-ωPBE and compared the results with those of PBE, because accurate prediction of the Li adsorption is important for performance as a Li storage that was first theoretically suggested and then experimentally realized. Our results show that PBE overestimates the adsorption energy inside a pore and the barrier height at the transition state of in-plane diffusion compared to the those of LC-ωPBE. In particular, LC-ωPBE predicted almost barrier-less in-plane diffusion of Li on the graphdiyne because of the presence of both in-plane and out-of-plane π orbitals. Also, LC-ωPBE favors a high spin state due to...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    19
    Citations
    NaN
    KQI
    []