The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest
2020
Abstract The study of carbon sequestration capacity under intensive management (IM) 1 measures (such as cutting, thinning, plowing, and fertilization) has become a major issue of carbon budgets in the context of global climate change. Bamboo forest, also known as “the second largest forest in the world,” plays an important role in the carbon cycle. Due to its high economic value, IM practices have been widely used to manage bamboo forests, which in turn may affect the global carbon cycle and carbon budget balance of the ecosystem. However, due to a lack of long-term field experiments and suitable representative models for carbon cycle research in bamboo forests, there is little understanding of the effects of IM measures on carbon sources/sinks in bamboo forest ecosystems at large temporal scales. In this study, we used a representative Lei bamboo (Phyllostachys praecox C.D. Chu & C.S. Chao) forest occurring in Taihuyuan town, Zhejiang Province, China as the study object and a new generation Triplex-Flux model to simulate the net ecosystem productivity (NEP) and net primary productivity (NPP) of the Lei bamboo forest under IM and nonintensive management (NIM) in 2011–2013 and 2015. The aim was to reveal the impact of IM on the carbon cycle of a bamboo forest ecosystem. The results showed that the Triplex-Flux model was suitable for studying the carbon cycle in the Lei bamboo forest. On a 30 min time scale, R2 values ranged between 0.78–0.91 (p 0.42, p
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
1
Citations
NaN
KQI