High‐resolution 1H‐MRSI of the brain using SPICE: Data acquisition and image reconstruction

2016 
Purpose To develop data acquisition and image reconstruction methods to enable high-resolution 1H MR spectroscopic imaging (MRSI) of the brain, using the recently proposed subspace-based spectroscopic imaging framework called SPICE (SPectroscopic Imaging by exploiting spatiospectral CorrElation). Theory and Methods SPICE is characterized by the use of a subspace model for both data acquisition and image reconstruction. For data acquisition, we propose a novel spatiospectral encoding scheme that provides hybrid data sets for determining the subspace structure and for image reconstruction using the subspace model. More specifically, we use a hybrid chemical shift imaging /echo-planar spectroscopic imaging sequence for two-dimensional (2D) MRSI and a dual-density, dual-speed echo-planar spectroscopic imaging sequence for three-dimensional (3D) MRSI. For image reconstruction, we propose a method that can determine the subspace structure and the high-resolution spatiospectral reconstruction from the hybrid data sets generated by the proposed sequences, incorporating field inhomogeneity correction and edge-preserving regularization. Results Phantom and in vivo brain experiments were performed to evaluate the performance of the proposed method. For 2D MRSI experiments, SPICE is able to produce high-SNR spatiospectral distributions with an approximately 3 mm nominal in-plane resolution from a 10-min acquisition. For 3D MRSI experiments, SPICE is able to achieve an approximately 3 mm in-plane and 4 mm through-plane resolution in about 25 min. Conclusion Special data acquisition and reconstruction methods have been developed for high-resolution 1H-MRSI of the brain using SPICE. Using these methods, SPICE is able to produce spatiospectral distributions of 1H metabolites in the brain with high spatial resolution, while maintaining a good SNR. These capabilities should prove useful for practical applications of SPICE. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    62
    Citations
    NaN
    KQI
    []