Sylvester’s problem and mock Heegner points

2017 
We prove that if $p \equiv 4,7 \pmod{9}$ is prime and $3$ is not a cube modulo $p$, then both of the equations $x^3+y^3=p$ and $x^3+y^3=p^2$ have a solution with $x,y \in \mathbb{Q}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    5
    Citations
    NaN
    KQI
    []