Melting heat transfer on MHD convective flow of a nanofluid over a stretching sheet with viscous dissipation and second order slip

2015 
In this study, we investigate the effects of viscous dissipation and second order slip on MHD boundary layer flow of an incompressible, electrically conducting water-based nanofluid over a stretching sheet. The governing momentum boundary layer and thermal boundary layer equations with the boundary conditions are transformed into a system of nonlinear ordinary differential equations which are then solved numerically by using the Runge–Kutta–Fehlberg method. The effects of the flow parameters on the velocity, temperature, nanoparticle concentration, shearing stress, rate of heat transfer, and rate of mass transfer are analyzed, and illustrations are provided by the inclusion of figures and tables for various values of different parameters. We determine that the skin friction increases in magnitude, whereas the rate of heat transfer and rate of mass transfer decrease in magnitude as the strength of the magnetic field increases. In addition, the magnitudes of skin friction, rate of heat transfer, and rate of mass transfer decrease as the melting heat transfer and first-order slip parameter both increase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    53
    Citations
    NaN
    KQI
    []