Direct numerical simulation of circular-cap bubbles in low viscous liquids using counter diffusion lattice Boltzmann method

2014 
Abstract The counter diffusion lattice Boltzmann method (LBM) is used to directly simulate rising circular-cap bubbles in low viscous liquids. A counter diffusion model for single phase flows has been extended to multiphase flows, and the implicit formulation is converted into an explicit one for easy calculation. Bubbles at high Reynolds numbers ranging from O(10 2 ) to O(10 4 ) are simulated successfully without any turbulence models, which cannot be done for the existing LBM versions. The characteristics of the circular-cap bubbles are studied for a wide range of Morton numbers and compared with the previous literature. Calculated results agree with the theoretical and experimental data. Consequently, the wake phenomena of circular-cap bubbles and bubble induced turbulence are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []