Design and Implementation of a Lizard-Inspired Robot

2021 
The purpose of this paper is to design a lizard-inspired robot driven by a single actuator. Lizard-inspired robots in previous studies had the issue of slippage of their supporting legs. To overcome this issue, a lizard-inspired robot consisting of a four-bar linkage mechanism was designed. The purpose of this paper was achieved through three processes. The first process was kinematic analysis, where the turning angle and stride length of the robot were analyzed. The kinematic analysis results were verified via numerical simulations. The second process was the design and fabrication of the robot. For the robot’s design, both a shuffle-walking method utilizing a claw-shaped leg mechanism and a sliding-rod mechanism for equipping the actuator on the robot’s own coordinates were designed. The third process was experimental verification. The first experimental result was that the claw-shaped leg mechanism was capable of generating an 85.26 N difference in the static frictional force in the longitudinal direction. The other three experimental results were that the robot was capable of driving with 3.51%, 3.16%, and 3.53% error compared to the kinematic analyses, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []