Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: new contributions from Hyblean peridotite xenoliths (southeastern Sicily)
2016
Abstract We studied a partially serpentinized peridotite xenolith, found in the diatreme tuff-breccia deposit at Valle Guffari (Hyblean Plateau, southeastern Sicily, Italy), which is representative of the Hyblean peridotite xenolith suite. We also considered all published (21) whole-rock analyses of Hyblean peridotites, to investigate the metasomatizing effects of seawater-related hydrothermal fluids in the Hyblean basement, an in-situ remnant of the ultraslow-spreading Permian Tethys. In detail, we analyzed the serpentine veins by different techniques (scanning electron microscopy-SEM, electron-probe microanalysis-EPMA, micro-Raman spectroscopy, X-ray powder diffraction-XRPD) to determine the crystal-chemical composition and the structure of the veins. In addition, secondary ion mass spectrometry (SIMS) was applied to measure the abundance of trace elements. Serpentine veins are made up of two Fe-rich polytypes, chrysotile 2 M c 1 and lizardite 1 T . The chondrite-normalized rare earth element compositions of both serpentine polytypes are lower than 1, except for a modest light rare earth element (LREE) enrichment, and also in some fluid-mobile elements (FME: B, Rb, Sr, U). Conversely, the whole-rock composition of the studied peridotite xenolith is enriched with LREE and other trace elements (B, Sr, P, Th, U, Pb), like most Hyblean peridotites. The REE and multi-element patterns of Hyblean peridotites are akin to those of hydrothermal sediments from the Mid-Atlantic Ridge and St. Demetrio hill (northern Hyblean Plateau), and abyssal peridotites (serpentinites) whose trace element abundance is generally ascribed to melt–rock interaction. The integrated interpretation of the data and the documentation of hydrothermal minerals [(Na,S)-rich apatite, carbonates] in serpentine veins indicate that serpentinization-related hydrothermal fluids do have a primary role in metasomatism (mainly for the abundance of LREE and high field strength elements—HFSE) of ancient (Permian Tethys) and modern abyssal peridotites.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
143
References
10
Citations
NaN
KQI