Energy-Efficient Routing in Wireless Networks in the Presence of Jamming

2016 
The effectiveness and the simple implementation of physical layer jammers make them an essential threat for wireless networks. In a multihop wireless network, where jammers can interfere with the transmission of user messages at intermediate nodes along the path, one can employ jamming oblivious routing and then employ physical-layer techniques (e.g., spread spectrum) to suppress jamming. However, whereas these approaches can provide significant gains, the residual jamming can still severely limit system performance. This motivates the consideration of routing approaches that account for the differences in the jamming environment between different paths. First, we take a straightforward approach where an equal outage probability is allocated to each link along a path and develop a minimum energy routing solution. Next, we demonstrate the shortcomings of this approach and then consider the joint problem of outage allocation and routing by employing an approximation to the link outage probability. This yields an efficient and effective routing algorithm that only requires knowledge of the measured jamming at each node. Numerical results demonstrate that the amount of energy saved by the proposed methods with respect to a standard minimum energy routing algorithm, especially for parameters appropriate for terrestrial wireless networks, is substantial.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    14
    Citations
    NaN
    KQI
    []