Connecting COPD GWAS genes: FAM13A controls TGFβ2 secretion by modulating AP-3 transport.

2021 
Chronic Obstructive Pulmonary Disease (COPD) is a common, complex disease and a major cause of morbidity and mortality. Although multiple genetic determinants of COPD have been implicated by genome-wide association studies (GWAS), the pathophysiologic significance of these associations remains largely unknown. From a COPD protein-protein interaction network module, we selected a network path between two COPD GWAS genes for validation studies: FAM13A-AP3D1-CTGF-TGFB2. We find that TGFβ2, FAM13A, and AP3D1 (but not CTGF) form a cellular protein complex. Functional characterization suggests that this complex mediates the secretion of TGFβ2 through an AP-3-dependent pathway, with FAM13A acting as a negative regulator by targeting a late stage of this transport that involves the dissociation of coat-cargo interaction. Moreover, we find that TGFβ2 is a transmembrane protein that engages the AP-3 complex for delivery to the late endosomal compartments for subsequent secretion through exosomes. These results identify a pathophysiologic context that unifies the biological network role of two COPD GWAS proteins and reveal novel mechanisms of cargo transport through an intracellular pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []