Evaluation of Two WiFi Positioning Systems Based on Autonomous Crowdsourcing of Handheld Devices for Indoor Navigation

2016 
Current WiFi positioning systems (WPSs) require databases – such as locations of WiFi access points and propagation parameters, or a radio map – to assist with positioning. Typically, procedures for building such databases are time-consuming and labour-intensive. In this paper, two autonomous crowdsourcing systems are proposed to build the databases on handheld devices by using our designed algorithms and an inertial navigation solution from a Trusted Portable Navigator (T-PN). The proposed systems, running on smartphones, build and update the database autonomously and adaptively to account for the dynamic environment. To evaluate the performance of automatically generated databases, two improved WiFi positioning schemes (fingerprinting and trilateration) corresponding to these two database building systems, are also discussed. The main contribution of the paper is the proposal of two crowdsourcing-based WPSs that eliminate the various limitations of current crowdsourcing-based systems which (a) require a floor plan or GPS, (b) are suitable only for specific indoor environments, and (c) implement a simple MEMS-based sensors’ solution. In addition, these two WPSs are evaluated and compared through field tests. Results in different test scenarios show that average positioning errors of both proposed systems are all less than 5.75 m.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    127
    Citations
    NaN
    KQI
    []