Design of focused ultrasound surgery transducers

1996 
High-intensity focused ultrasound surgery (FUS) has been developed for the extracorporeal treatment of various benign and malignant soft tissue tumors. The system developed at the Institute of Cancer Research/Royal Marsden (ICR/RM) National Health Service (NHS) Trust incorporates a 150 mm focal length focused bowl transducer operated at 1.7 MHz, and is currently undergoing Phase 1 clinical trials for the treatment of benign prostatic hyperplasia and superficial bladder cancer. However, the application of this transducer is limited by its focal length to a maximum depth of 100 mm, and by power absorption in the skin to a minimum depth of 40 mm. A computer model of acoustic fields, which assumes uniform excitation of the transducer over its entire surface, has previously been published. This has been used both to calculate the intensity in nonattenuating media, and to estimate the absorbed power per unit volume in homogeneous tissues in order to allow determination of the transducer configurations (frequency, focal length, and diameter) necessary for the treatment of both deep (/spl sim/150 mm) and shallow (/spl sim/20 mm) soft tissue tumors. These depths encompass the typical range for human tissues which are likely to be treated. Calculations cover the frequency range 0.5-4.5 MHz, focal lengths from 70 to 200 mm, and transducer diameters from 30 to 190 mm. The results show that appropriate transducers can be designed for the noninvasive treatment of tumors in specific organs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    21
    Citations
    NaN
    KQI
    []