Adiposity and bone microarchitecture in the GLOW study.

2020 
Low body mass index (BMI) is an established risk factor for fractures in postmenopausal women but the interaction of obesity with bone microarchitecture is not fully understood. In this study, obesity was associated with more favourable bone microarchitecture parameters but not after parameters were normalised for body weight. INTRODUCTION To examine bone microarchitecture in relation to fat mass and examine both areal bone mineral density (aBMD) and microarchitecture in relation to BMI categories in the UK arm of the Global Longitudinal Study of Osteoporosis in Women. METHODS Four hundred and ninety-one women completed questionnaires detailing medical history; underwent anthropometric assessment; high-resolution peripheral quantitative computed tomography (HRpQCT) scans of the radius and tibia and DXA scans of whole body, proximal femur and lumbar spine. Fat mass index (FMI) residuals (independent of lean mass index) were derived. Linear regression was used to examine HRpQCT and DXA aBMD parameters according to BMI category (unadjusted) and HRpQCT parameters in relation to FMI residuals (with and without adjustment for anthropometric, demographic and lifestyle covariates). RESULTS Mean (SD) age was 70.9 (5.4) years; 35.0% were overweight, 14.5% class 1 obese and 7.7% class 2/3 obese. There were significant increasing trends according to BMI category in aBMD of whole body, hip, femoral neck and lumbar spine (p ≤ 0.001); cortical area (p < 0.001), thickness (p < 0.001) and volumetric density (p < 0.03), and trabecular number (p < 0.001), volumetric density (p < 0.04) and separation (p < 0.001 for decreasing trend) at the radius and tibia. When normalised for body weight, all HRpQCT and DXA aBMD parameters decreased as BMI increased (p < 0.001). FMI residuals were associated with bone size and trabecular architecture at the radius and tibia, and tibial cortical microarchitecture. CONCLUSION Significant trends in HRpQCT parameters suggested favourable bone microarchitecture at the radius and tibia with increasing BMI but these were not proportionate to increased weight.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []