Engineered Mott ground state in a LaTiO 3+δ /LaNiO 3 heterostructure

2016 
In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO3 and a doped Mott insulator LaTiO3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and eg orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states. Interfaces between two dissimilar transition metal oxides can exhibit emergent strongly correlated electronic and magnetic states due to charge transfer and electronic reconfiguration. Here, the authors synthesize and investigate an exotic Mott ground state in LaTiO3+δ/LaNiO3heterostructures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    33
    Citations
    NaN
    KQI
    []