Emergent flat band electronic structure in a VSe 2 /Bi 2 Se 3 heterostructure

2021 
Flat band electronic states are proposed to be a fundamental tool to achieve various quantum states of matter at higher temperatures due to the enhanced electronic correlations. However, materials with such peculiar electronic states are rare and often rely on subtle properties of the band structures. Here, by using angle-resolved photoemission spectroscopy, we show the emergent flat band in a VSe2 / Bi2Se3 heterostructure. Our photoemission study demonstrates that the flat band covers the entire Brillouin zone and exhibits 2D nature with a complex circular dichroism. In addition, the Dirac cone of Bi2Se3 is not reshaped by the flat band even though they overlap in proximity of the Dirac point. These features make this flat band distinguishable from the ones previously found. Thereby, the observation of a flat band in the VSe2 / Bi2Se3 heterostructure opens a promising pathway to realize strongly correlated quantum effects in topological materials. Dispersionless flat bands are often required to observe unusual quantum states of matter. Here, angle-resolved photoemission spectroscopy (ARPES) reveals a flat band electronic structure in a VSe2/Bi2Se3 heterostructure, and exhibits complex circular dichroism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []