Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion

2020 
Abstract Herein, CeO2 catalysts with nanotube, nanobelt, and wire-in-nanotube morphologies were successfully fabricated by a facile single spinneret electrospinning technique. And catalytic activity of these electrospun CeO2 nanomaterials were evaluated by toluene catalytic combustion reaction. Among the three morphologies of CeO2 catalysts, CeO2 nanobelt (CeO2-NB) presented the best toluene catalytic combustion performance (T90% = 230 °C) at WHSV = 60,000 mL g−1 h−1, also exhibited the lowest activation energy (Ea = 80.2 kJ/mol). Based on the characterization by TEM, XRD, BET, SEM, XPS, Raman spectroscopy, H2-TPR, and O2-TPD results, the high catalytic activity of CeO2-NB catalyst was attributed to its porous nanobelt morphology with larger specific surface area and the abundance of surface oxygen vacancies. Furthermore, the CeO2-NB catalysts presented an excellent durability by longtime on-stream test (as well as presence of 5% vol. water vapor), suggesting its great potential for practical air pollution control application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    11
    Citations
    NaN
    KQI
    []