Crystal Phase Quantum Dots in the Ultrathin Core of GaAs–AlGaAs Core–Shell Nanowires

2015 
Semiconductor quantum dots embedded in nanowires (NW-QDs) can be used as efficient sources of nonclassical light with ultrahigh brightness and indistinguishability, needed for photonic quantum information technologies. Although most NW-QDs studied so far focus on heterostructure-type QDs that provide an effective electronic confinement potential using chemically distinct regions with dissimilar electronic structure, homostructure NWs can localize excitons at crystal phase defects in leading to NW-QDs. Here, we optically investigate QD emitters embedded in GaAs–AlGaAs core–shell NWs, where the excitons are confined in an ultrathin-diameter NW core and localized along the axis of the NW core at wurtzite (WZ)/zincblende (ZB) crystal phase defects. Photoluminescence (PL)-excitation measurements performed on the QD-emission reveal sharp resonances arising from excited electronic states of the axial confinement potential. The QD-like nature of the emissive centers are suggested by the observation of a narrow PL...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    39
    Citations
    NaN
    KQI
    []