Strain Control of Phase Transition and Magnetic Property in Multiferroic BiFeO3 Thin Films

2019 
Abstract BiFeO3 (BFO), a room-temperature antiferromagnetic-ferroelectric multiferroic, is widely researched due to its potential applications for electric-field control of the magnetism. In this work, the strain control of the phase transition and magnetic properties in the BFO/LaAlO3 heterostructures were investigated. The O K edge polarization-dependent X-ray absorption spectroscopy (XAS) spectra show that the Fe 3d level splits into five levels, which proves that the FeO5 pyramid is asymmetric in the highly strained tetragonal-like BFO. The spin canting induced by the asymmetric structure leads to the magnetic moment. Thus, an obvious magnetic signal in the 17-nm-thick BFO thin films was observed by the Quantum Design magnetic property measurement system. With the increase of the BFO film thickness, the clamping effect induced by the substrate becomes weak, further leading to the BFO phase transition. The O K edge polarization-dependent XAS spectra demonstrate that the orbital reconstruction exists at the mixed BFO phase boundaries. Since the orbital reconstructions can induce the strong magnetic coupling, the magnetic order of the different BFO phases will be coupled with each other. It causes a variation of the magnetic property at the phase boundaries or in the BFO phases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    5
    Citations
    NaN
    KQI
    []