Effect of Uncertainty in Nasal Airway Deposition of Radioactive Particles on Effective Dose

1998 
In the current ICRP human respiratory tract (RT) model (ICRP Publication 66), the deposition of particles in various regions of the RT during natural breathing is modelled by considering the RT as a series of filters, resulting in deposition probabilities for distal portions of the RT being dependent on those of the proximal segments. Thus, uncertainties in regional deposition in proximal segments of the RT are reflected or propagated in uncertainties in deposition in the distal segments of the lung. Experimental data on aerosol particle deposition have demonstrated significant variability in nasal airway (NA) deposition for different individuals studied. This report summarises the impact of introducing variability in NA deposition efficiency on the calculation of effective doses using the ICRP 66 model for selected radionuclides. The computer software LUDEP, modified for this purpose, was used to customise deposition patterns, and effective doses were calculated for several radionuclides ( 111 In, 106 Ru, 60 Co, 210 Po, 238 U and 239 Pu) chosen to represent isotopes with various decay schemes and half-lives. The results indicated significant but particle-size-specific effects of assumed NA deposition efficiencies on the calculated effective doses, which varied typically by factors of five to six. The majority of the variability was associated with direct effects on deposition patterns, but in some cases, alterations of radiation dose distribution within the various target organs also contributed to the variability. These results provide a basis for evaluating uncertainties due to inter-individual differences in deposition patterns for radiation protection and risk analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []