An on-site, ultra-sensitive, quantitative sensing method for the determination of total aflatoxin in peanut and rice based on quantum dot nanobeads strip
2017
An on-site, ultra-sensitive, and quantitative sensing method was developed based on quantum dot nanobeads (QDNBs) and a test strip for the determination of total aflatoxins (AFTs) in rice and peanuts. The monoclonal antibody against AFT (mAbAFT) was homemade and labeled with QDNB. After the pre-coating of the AFT antigen on the test line (T line), the competitive immunoreactions were conducted between AFT and AFT antigen on the T line with QDNBs-mAbAFT. Under optimal conditions, this approach allowed a rapid response towards AFT with a considerable sensitivity of 1.4 pg/mL and 2.9 pg/mL in rice and peanut matrices, respectively. The put-in and put-out durations were within 10 min. The recoveries for AFT in rice and peanut sample matrices were recorded from 86.25% to 118.0%, with relative deviations (RSD) below 12%. The assay was further validated via the comparison between this QDNB strip and the conventional HPLC method using spiked samples. Thus, the design provided a potential alternative for on-site, ultra-sensitive, and quantitative sensing of AFT that could also be expanded to other chemical contaminants for food safety.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI