Chemical potential evaluation in NVT lattice-gas simulations

2012 
The discrete nature of the partition function of a lattice-gas system can be exploited to build an efficient strategy for the evaluation of the chemical potential of a periodic lattice-gas with arbitrarily ranged interactions during a simulation in the canonical ensemble, with the need of no additional sampling as it were required instead by the Widom insertion/deletion approach. The present method is based on the main concepts of the small system grand ensemble [for details, see G. Soto-Campos, D. S. Corti, and H. Reiss, J. Chem. Phys. 108, 2563 (1998)10.1063/1.475640], whose key idea is to study the properties of a sublattice (called small system) and of its complementary (the reservoir sublattice) as they were two separated subsystems. The accuracy of the measured chemical potential can be further improved by artificially “restoring” the missing connections among the reservoir sublattice sites located at the boundaries with the small system. We first illustrate the theory and then we compare μVT with N...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []