The weighted Hilbert--Schmidt numerical radius.

2021 
Let $\mathbb{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a Hilbert space $\mathcal{H}$ and let $N(\cdot)$ be a norm on $\mathbb{B}(\mathcal{H})$. For every $0\leq \nu \leq 1$, we introduce the $w_{_{(N,\nu)}}(A)$ as an extension of the classical numerical radius by \begin{align*} w_{_{(N,\nu)}}(A):= \displaystyle{\sup_{\theta \in \mathbb{R}}} N\left(\nu e^{i\theta}A + (1-\nu)e^{-i\theta}A^*\right) \end{align*} and investigate basic properties of this notion and prove inequalities involving it. In particular, when $N(\cdot)$ is the Hilbert--Schmidt norm ${\|\!\cdot\!\|}_{2}$, we present several the weighted Hilbert--Schmidt numerical radius inequalities for operator matrices. Furthermore, we give a refinement of the triangle inequality for the Hilbert--Schmidt norm as follows: \begin{align*} {\|A+B\|}_{2} \leq \sqrt{2w_{_{({\|\!\cdot\!\|}_{2},\nu)}}^2\left(\begin{bmatrix} 0 & A \\ B^* & 0 \end{bmatrix}\right) - (1-2\nu)^2{\|A-B\|}_{2}^2} \leq {\|A\|}_{2} + {\|B\|}_{2}. \end{align*} Our results extend some theorems due to F.~Kittaneh et al. (2019).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []