Extending the life of water reuse reverse osmosis membranes using chlorination

2021 
Abstract Numerous efforts have been made over the years to extend the lifespan of reverse osmosis (RO) membranes. End-of-life RO membranes are periodically replaced and usually disposed of in landfills. Periodic membrane modification using chlorination may be an alternative to recover their productivity without compromising membrane characteristics. In this research, RO membranes from an engineering-scale ultrafiltration-RO system treating reclaimed water were exposed five times to 2000 ppm-h of chlorine immediately after chemical cleaning. Water, conductivity, ion, and organic permeability coefficients and rejection were related to the chlorine dose. The breakthrough of six naturally occurring viruses with different levels of persistence to wastewater treatment was also monitored. After five chlorine doses, the apparent water permeability was recovered to 1.0–1.5 L m−2 h−1 bar−1, a 3.1-fold increase compared to the end-of-life membranes, with only a 2% decrease in observed salt rejection. Interestingly, apparent conductivity and ion permeability slightly decreased after the first and second chlorine dose, likely because the chlorine removed irreversible fouling/scaling and thus reduced concentration polarization. After the third chlorine dose, as the RO membrane surface oxidized, more monovalent ions permeated through the membrane, while observed divalent ion rejection remained relatively high and constant (>97%). Similarly, the RO permeate total fluorescence intensity decreased between end-of-life membrane and the second chlorine dose, followed by an increase after the third dose, and only low molecular weight substances (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []