Topotactic phase transformations by concerted dual-ion migration of B-site cation and oxygen in multivalent cobaltite La–Sr–Co–Ox films

2020 
Abstract Manipulating topotactic phase transformations via orderly ion transfer in complex oxides ABOx is ubiquitous in advanced applications such as ionotronics, ion-batteries and catalysts. Most of such ion-mediated transformations are accomplished by the transfer of oxygen or A-site ions. However, implementing the transformation via the transfer of B-site ions, despite the great challenge to overcome a large cohesive energy, has unique advantage since they host most functional properties of materials. Here, we present a tri-state phase transformation from perovskite (P) to brownmillerite (BM) and to single-layered perovskite (SL) structure via the concerted migration of oxygen and B-site Co-ions in La0.7Sr0.3CoO3 thin films. Ac-STEM, XPS, XAS, PNR, magnetic and electric measurements demonstrated that presented B-site Co-cation transfer is along the CoO4 tetrahedral sub-layer of the BM film, which leads to the reconfiguration of 3d-electrons and spin state in remanent Co ions and causes tremendous changes in magnetic and electric properties: from canted-antiferromagnetic insulator in BM phase to ferromagnetic insulator in SL phase. First-principles calculations revealed that the La3+-doping at A-site largely reduces the cohesive energy of Co-ions in CoO4 and destabilize the CoO4 tetrahedron of BM phase, which explains the formation of Co-ions transfer channel in the CoO4 tetrahedral sub-layer. The present study highlights the effectiveness of regulating topotactic transformation via B-site ions transfer and provides a new pathway for manipulating the topotactic transformation with diverse functionalities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    5
    Citations
    NaN
    KQI
    []