Plasmodium falciparum histidine rich protein HRPII inhibits the antiinflammatory function of antithrombin

2020 
BACKGROUND: It has been reported that histidine-rich protein II (HRPII), secreted by the malaria parasite, Plasmodium falciparum (Pf), inhibits the heparin-dependent anticoagulant activity of antithrombin (AT) in vitro and in plasma-based assay systems. OBJECTIVE: The objective of this study was to test the hypothesis that HRPII may also interact with the AT-binding vascular glycosaminoglycans (GAGs), thereby inhibiting the anti-inflammatory signaling function of the serpin. METHODS: We expressed HRPII in bacteria, purified it to homogeneity and studied its effect on endothelial cell signaling in the absence and presence of AT employing established signaling assays. RESULTS: We demonstrate that a low concentration of HRPII potently disrupts the barrier permeability function of endothelial cells. Moreover, HRPII competitively inhibits the protective effect of AT by a concentration-dependent manner. Similarly, AT inhibits the pro-inflammatory activity of HRPII by a concentration-dependent manner. The siRNA knockdown of 3-O-sulfotransferase 1 (3-OST-1), the enzyme responsible for the essential 3-O-sulfation of the AT-binding GAGs, downregulates the pro-inflammatory function of HRPII in endothelial cells, supporting the hypothesis that HRPII competitively inhibits the interaction of AT with 3-OS containing vascular GAGs. Histidine-rich protein II elicits its barrier-disruptive effect by the Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and AT counteracts this effect. We further demonstrate that inorganic polyphosphates bind HRPII with a high affinity to amplify the pro-inflammatory signaling function of HRPII in both cellular and in vivo permeability models. CONCLUSION: We postulate that Pf-derived HRPII and polyphosphate can contribute to the pathogenesis of malaria infection by downregulating the AT-dependent anti-inflammatory and anticoagulant pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    6
    Citations
    NaN
    KQI
    []