An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion

2015 
Understanding the formation of electrodynamically interacting assemblies of metal nanoparticles requires accurate computational methods for determining the forces and propagating trajectories. However, since computation of electromagnetic forces occurs on attosecond to femtosecond timescales, simulating the motion of colloidal nanoparticles on milliseconds to seconds timescales is a challenging multi-scale computational problem. Here, we present a computational technique for performing accurate simulations of laser-illuminated metal nanoparticles. In the simulation, we self-consistently combine the finite-difference time-domain method for electrodynamics (ED) with Langevin dynamics (LD) for the particle motions. We demonstrate the ED-LD method by calculating the 3D trajectories of a single 100-nm-diameter Ag nanoparticle and optical trapping and optical binding of two and three 150-nm-diameter Ag nanoparticles in simulated optical tweezers. We show that surface charge on the colloidal metal nanoparticles plays an important role in their optically driven self-organization. In fact, these simulations provide a more complete understanding of the assembly of different structures of two and three Ag nanoparticles that have been observed experimentally, demonstrating that the ED-LD method will be a very useful tool for understanding the self-organization of optical matter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    22
    Citations
    NaN
    KQI
    []