A new series solution method for two-dimensional elastic wave scattering along a canyon in half-space

2016 
Abstract This paper presents a semi-analytical method for studying the two-dimensional problem of elastic wave scattering by surface irregularities in a half-space. The new method makes use of the member of a c-completeness family of wave functions to construct the scattering fields, and then applies equal but opposite tractions to those of the foregoing constructed scattering fields on the horizontal surface of the half-space to produce additional scattering fields. These additional scattering fields are a series of Lamb's solutions. Thus the whole scattering field constructed in the series automatically satisfies the Navier equations, the condition of zero traction on the half-space surface, and the radiation boundary conditions at infinity. Using the traction-free conditions along the canyon surface, the coefficients of the series solutions are determined via a least-squares method. For incident P, SV, and Rayleigh waves, the numerical results are presented for the scattering displacements in the vicinity of a semi-circular canyon in the half-space.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    5
    Citations
    NaN
    KQI
    []