A cell-free biosynthesis platform for modular construction of protein glycosylation pathways

2019 
Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer protein glycosylation remains a bottleneck. To address this limitation, we describe a modular, versatile cell-free platform for glycosylation pathway assembly by rapid in vitro mixing and expression (GlycoPRIME). In GlycoPRIME, crude cell lysates are enriched with glycosyltransferases by cell-free protein synthesis and then glycosylation pathways are assembled in a mix-and-match fashion to elaborate a single glucose priming handle installed by an N-linked glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs. We then use selected pathways to design a one-pot cell-free system to synthesize a vaccine protein with an α-galactose motif and engineered Escherichia coli strains to produce human antibody constant regions with minimal sialic acid motifs. We anticipate that our work will facilitate glycoscience and make possible new glycoengineering applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    0
    Citations
    NaN
    KQI
    []