Microwave induced tunable subharmonic steps in superconductor–ferromagnet–superconductor Josephson junction

2019 
We investigate the coupling between ferromagnet and superconducting phase dynamics in superconductor–ferromagnet–superconductor Josephson junction. The current-voltage characteristics of the junction demonstrate a pattern of subharmonic current steps which forms a devil’s staircase structure. We show that a width of the steps becomes maximal at ferromagnetic resonance. Moreover, we demonstrate that the structure of the steps and their widths can be tuned by changing the frequency of the external magnetic field, ratio of Josephson to magnetic energy, Gilbert damping and the junction size.We investigate the coupling between ferromagnet and superconducting phase dynamics in superconductor–ferromagnet–superconductor Josephson junction. The current-voltage characteristics of the junction demonstrate a pattern of subharmonic current steps which forms a devil’s staircase structure. We show that a width of the steps becomes maximal at ferromagnetic resonance. Moreover, we demonstrate that the structure of the steps and their widths can be tuned by changing the frequency of the external magnetic field, ratio of Josephson to magnetic energy, Gilbert damping and the junction size.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []